萬年歷

(Trigonometric)是數學中屬于初等函數中的超越函數的一類函數。它們的本質是任意角的集合與一個比值的集合的變量之間的映射。通常的三角函數是在平面直角坐標系中定義的,其定義域為整個實數域。另一種定義是在直角三角形中,但并不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到復數系。它包含六種基本函數:正弦、余弦、正切、余切、正割、余割。由于三角函數的周期性,它并不具有單值函數意義上的反函數。三角函數在復數中有較為重要的應用。在物理學中,三角函數也是常用的工具。

三角函數起源

“三角學”,英文Trigonometry,法文Trigonometrie,德文Trigonometrie,都來自拉丁文 Trigonometria。現代三角學一詞最初見于希臘文。最先使用Trigonometry這個詞的是皮蒂斯楚斯( Bartholomeo Pitiscus,1516-1613),他在1595年出版一本著作《三角學:解三角學的簡明處理》,創造了這個新詞。它是由τριγωυου(三角學)及μετρει υ(測量)兩字構成的,原意為三角形的測量,或者說解三角形。古希臘文里沒有這個字,原因是當時三角學還沒有形成一門獨立的科學,而是依附于天文學。因此解三角形構成了古代三角學的實用基礎。

早期的解三角形是因天文觀測的需要而引起的。還在很早的時候,由于墾殖和畜牧的需要,人們就開始作長途遷移;后來,貿易的發展和求知的欲望,又推動他們去長途旅行。在當時,這種遷移和旅行是一種冒險的行動。人們穿越無邊無際、荒無人煙的草地和原始森林,或者經水路沿著海岸線作長途航行,無論是那種方式,都首先要明確方向。那時,人們白天拿太陽作路標,夜里則以星星為指路燈。太陽和星星給長期跋山涉水的商隊指出了正確的道路,也給那些沿著遙遠的異域海岸航行的人指出了正確方向。

就這樣,最初的以太陽和星星為目標的天文觀測,以及為這種觀測服務的原始的三角測量就應運而生了。因此可以說,三角學是緊密地同天文學相聯系而邁出自己發展史的第一步的

同角三角函數的基本關系式

倒數關系:

商的關系:

平方關系:

tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1

sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα

sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α

 
誘導公式
sin(-α)=-sinα
cos(-α)=cosα tan(-α)=-tanα
cot(-α)=-cotα
   

sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα

sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα

sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα

sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα

sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα

sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα

sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα

sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z)

 

兩角和與差的三角函數公式

萬能公式

sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ

              tanα+tanβ
tan(α+β)=——————
             1-tanα ·tanβ

              tanα-tanβ
tan(α-β)=——————
             1+tanα ·tanβ

        2tan(α/2)
sinα=——————
       1+tan2(α/2)

       1-tan2(α/2)
cosα=——————
       1+tan2(α/2)

       2tan(α/2)
tanα=——————
      1-tan2(α/2)

 

半角的正弦、余弦和正切公式

三角函數 的降冪公式
三角函數的降冪公式 半角的正弦、余弦和正切公式
   

二倍角的正弦、余弦和正切公式

三倍角的正弦、余弦和正切公式

sin2α=2sinαcosα

cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α

         2tanα
tan2α=—————
        1-tan2α

sin3α=3sinα-4sin3α

cos3α=4cos3α-3cosα

       3tanα-tan3α
tan3α=——————
        1-3tan2α

   

三角函數的和差化積公式

三角函數的積化和差公式

                 α+β       α-β
sinα+sinβ=2sin—--·cos—-—
                  2          2
                 α+β       α-β
sinα-sinβ=2cos—--·sin—-—
                  2          2
                 α+β       α-β
cosα+cosβ=2cos—--·cos—-—
                  2          2
                   α+β       α-β
cosα-cosβ=-2sin—--·sin—-—
                    2          2
           1
sinα ·cosβ=-[sin(α+β)+sin(α-β)]
           2
           1
cosα ·sinβ=-[sin(α+β)-sin(α-β)]
           2
           1
cosα ·cosβ=-[cos(α+β)+cos(α-β)]
           2
              1
sinα ·sinβ=- -[cos(α+β)-cos(α-β)]
              2
 
化asinα ±bcosα為一個角的一個三角函數的形式(輔助角的三角函數的公式)
化asinα ±bcosα為一個角的一個三角函數的形式(輔助角的三角函數的公式)
歪歪網絡 聯系QQ:188-222-111
杀号定胆四川快乐12